A numerical probelm
Question description
Function $f(x)$ is a smooth monotone increasing function on $[0,+\infty)$, satisfying $f(f(x))=x^2+1$. Please find the value of $f(0)$. Whatever the method is used.
My solution
This is a problem I saw on an online platform and came up with a solution. You can think about this problem yourself, my solution is hidden. If you want to see my solution, click on HERE.
(>:@*:^:_6)(%:2)^~(>:@*:^:6) 0
0.642095
Result calculated by J.
Firstly, note that $\lim_{x\rightarrow \infty}f(x)=x^{\sqrt{2}}$. So $x^{\sqrt{2}}$ is a good approximation while $x$ is sufficiently large. Firstly, we use following denotation
$$f^n(x)\triangleq\underbrace{f(f(f(\dots}_{x}0)\dots).$$We can obtain:
$$f^{n+1}(0)\approx (f^{n}(0))^{\sqrt{2}}, n\in \mathbb{N}$$Here, $n$ is large enough. And notice that $f^{2}(x)=x^2+1,\; f^{-2}(x)=\sqrt{x-1}$. Thus,
$$f(0)=f^{1}(0)=\lim_{n->\infty}f^{-2n}(\left(f^{2n}(0)\right)^{\sqrt{2}})$$In fact, this approx converses very quickly. The error can be estimate as follows:
$$x^{\sqrt{2}}<f(x)<x^{\sqrt{2}}+1,$$ $$f^{2n+1}(0)-\left(f^{2n}(0)\right)^{\sqrt{2}}<1,$$ $$f^{2n-1}(0)-f^{-2}\left(\left(f^{2n}(0)\right)^{\sqrt{2}}\right)\approx 1\times\left.\frac{\mathrm{d} f^{-2}(x)}{\mathrm{d} x}\right|_{x=f^{2n}(0)}=\frac{1}{2 \sqrt{f^{2n}(0)-1}}=\frac{1}{2f^{2n-2}(0)},$$ $$f(0)-f^{-2n}\left(\left(f^{2n}(0)\right)^{\sqrt{2}}\right)\approx \frac{1}{2f^{2n-2}(0)}\frac{1}{2f^{2n-4}(0)}\dots\frac{1}{2f^{2}(0)}.$$ $$\lim_{n\rightarrow \infty} f^{2n}(0) =C^{2^n},$$Thus the error is
$$O\left(\frac{1}{2^n C^{2^{4^{n-1}/3}}}\right)$$, where $C\approx 1.22590244352$ is a constant.
Mathematica Code:
Nest[Sqrt[# - 1] &, Nest[#^2 + 1 &, 0, 6]^Sqrt[2], 6] // N